
54gene-wgs-germline

Bari Jane Ballew, Esha Joshi, Cameron Palmer

Aug 10, 2022

CONTENTS

1 Documentation of WGS variant calling at 54gene 1
1.1 Overview . 1
1.2 Installation . 2
1.3 Configuration . 3
1.4 Execution . 6
1.5 Investigate the results . 7
1.6 Tests . 9
1.7 Core pipeline . 10
1.8 Changelog . 14
1.9 For developers . 15
1.10 References . 15

i

ii

CHAPTER

ONE

DOCUMENTATION OF WGS VARIANT CALLING AT 54GENE

1.1 Overview

This workflow was designed by the Genomics & Data Science team (GDS) at 54gene and is used to analyze paired-end
short-read germline whole-genome sequencing data. This pipeline is designed to first be deployed in small batches
(e.g. per flow cell), starting with FASTQs and resulting in gVCFs and a small batch joint-called VCF. A second run of
the pipeline can receive a larger batch of gVCFs (e.g. gVCFs derived from many flow cells), and generates a large batch
joint-called VCF. The workflow, which is designed to support reproducible bioinformatics, is written in Snakemake and
is platform-agnostic. All dependencies are installed by the pipeline as-needed using conda. Development and testing
has been predominantly on AWS’ ParallelCluster using Amazon Linux using Snakemake version 7.8.2.

Features:

• Read filtering and trimming

• Read alignment, deduplication, and BQSR

• Variant calling and filtering

• Joint-genotyping

• Sex discordance and relatedness assessment

• Generate MultiQC reports

To install the latest release, type:

git clone https://gitlab.com/data-analysis5/dna-sequencing/54gene-wgs-germline.git

1.1.1 Inputs

The pipeline requires the following inputs:

• A headerless, whitespace delimited manifest.txt file with sample names and paths (columns dependent on
the run-mode)

• Config file with the run-mode specified and other pipeline parameters configured (see default config provided in
config/config.yaml)

• A tab-delimited intervals.tsv file with names of intervals and paths to region (BED) files of the genome you
want to parallelize the variant calling and joint-calling steps by (i.e. 50 BED files each with a small region of the
genome to parallelize by)

• A tab-delimited sex_linker.tsv file with the sample names in one column and sex in the other to identify
discordances in reported vs. inferred sex

1

https://snakemake.readthedocs.io/en/stable/
https://docs.conda.io/en/latest/
https://aws.amazon.com/hpc/parallelcluster/
https://aws.amazon.com/amazon-linux-2/

54gene-wgs-germline

• A multiqc.yaml config file for generating MultiQC reports (provided for you)

1.1.2 Outputs

Depending on which run-mode you have set, you will be able to generate:

• A hard-filtered, multi-sample joint-called VCF in full and joint_genotyping mode

• Per-sample gVCFs for all regions of the genome for future joint-calling in full mode

• Deduplicated and post-BQSR BAM files in full mode

• Various QC metrics (e.g. FastQC, MultiQC, bcftools stats) in all three modes

See the Installation, Execution, and Configuration for details on setting up and running the pipeline.

1.2 Installation

This workflow was designed to use conda for dependency management and utilizes Snakemake as the workflow man-
agement system, ensuring reproducible and scalable analyses.

This installation guide is designed for Unix/Linux environments; however, this pipeline has been minimally tested on
OSX as well.

1.2.1 Obtain a copy of this workflow

Clone this repository to your local system, into the place where you want to perform the data analysis:

git clone git@gitlab.com:data-analysis5/54gene-wgs-germline.git

1.2.2 Install the run-time environment

If needed, follow this guide to install Miniconda.

Once installed, create the run-time conda environment with minimal dependencies defined using the following com-
mand:

conda env create -f environment.yaml

Activate the environment as follows:

conda activate 54gene-wgs-germline

2 Chapter 1. Documentation of WGS variant calling at 54gene

https://docs.conda.io/en/latest/
https://snakemake.readthedocs.io/en/stable/
https://docs.conda.io/en/latest/miniconda.html#installing

54gene-wgs-germline

1.3 Configuration

The workflow needs to be configured to perform the analysis of your choice by editing the following files in the config/
folder. Each file is described in more detail below.

• Configuration file

• Manifest file

• Intervals file

• Sex linker file

• MultiQC configuration

1.3.1 Configuration file

The pipeline offers three run modes. Please specify the run mode in config.yaml. The name of the file defaults to
config.yaml but you can use other filenames in conjunction with Snakemake’s --configfile command line flag.

• full: This mode starts with FASTQs and emits a joint-called, filtered, multi-sample VCF.

• joint_genotyping: This mode starts with gVCFs and runs joint-calling and filtering, emitting a multi-sample
VCF. In the event you have analyzed batches of samples in the full-run mode, these batches can then jointly
re-genotyped with this run mode.

• fastqc_only: This mode starts with FASTQs and emits trimmed FASTQs as well as a multiQC report for raw and
trimmed reads. This run mode is meant for performing QC on FASTQ data before further downstream analysis.

1.3.2 Manifest file

You will need to provide a headerless, white-space delimited manifest file to run the pipeline for all three run-modes.
The default name for the file is manifest.txt but this is user configurable in the config file under sampleFile.

For full and fastqc_only mode, the manifest.txt requires the following columns:

• Columns: readgroup sample_ID path/to/r1.fastq path/to/r2.fastq

• readgroup values should be unique, e.g. <sampleID>_<barcode>_<lane>

• sample_ID should be the same for all FASTQ pairs from a single sample, and can be different from the FASTQ
filenames

For example:

Sample1_S1_L001 Sample1 input/Sample_001_S1_L001_R1.fastq input/Sample_001_S1_L001_R2.
→˓fastq
Sample1_S1_L002 Sample1 input/Sample_001_S1_L002_R1.fastq input/Sample_001_S1_L002_R2.
→˓fastq

For joint_genotyping mode:

• Columns: sample_ID path/to/file.g.vcf.gz

• sample_ID values should be unique, and should correspond to the sample IDs in the gVCF header

• gVCFs should be bgzipped and indexed

For example:

1.3. Configuration 3

54gene-wgs-germline

Sample1 vcfs/Sample1.g.vcf.gz
Sample2 vcfs/Sample2.g.vcf.gz

1.3.3 Intervals file

For full and joint_genotyping modes only.

Joint-calling for a large number of samples is computationally expensive and time-consuming. This pipeline was de-
signed to mitigate these issues by parallelizing joint-calling over multiple intervals of the genome. To specify the
number of intervals, and which regions to parallelize over, a 2-column tab-delmited intervals.tsv file can be spec-
ified. The filename can be customized and edited in the config file under intervalsFile.

This file contains two columns with headers:

• interval_name for the name of the particular interval or region

• file_path full path to the interval/region BED file, Picard-style .interval_list, VCF file, or GATK-style
.list or .intervals file (see further details on these formats here)

For example:

interval_name file_path
interval_1 resources/scattered_calling_intervals/interval_1.bed
interval_2 resources/scattered_calling_intervals/interval_2.bed

The pipeline will supply these interval files to the GATK HaplotypeCaller, GenomicsDBImport, and
GenotypeGVCFs steps to run concurrent instances of these rules at each specified interval(s), reducing overall exe-
cution time.

We recommend specifying regions of equal size for parallelization.

1.3.4 Sex linker file

The pipeline provides a boolean option somalier to estimate relatedness amongst the samples using Somalier in the
config.yaml (see check_relatedness parameter in Configuration). This requires a 2-column, tab-delimited file.
The filename defaults to sex_linker.tsv and is specified in the config.yaml under sexLinker. This file requires:

• First column with the header Sample with all sample names

• Second column with the header Sex containing case-insensitive encodings of sex in either m/f or male/female
format

For example:

Sample Sex
NA12878 F
Subject1 female
Subject2 m

4 Chapter 1. Documentation of WGS variant calling at 54gene

https://gatk.broadinstitute.org/hc/en-us/articles/360035531852-Intervals-and-interval-lists
https://github.com/brentp/somalier

54gene-wgs-germline

1.3.5 MultiQC configuration

A configuration file for MultiQC can be found in config/multiqc.yaml and is used for generating and specifying
the order of the various modules in the MultiQC report from the pipeline. We do not recommend modifying this file
unless you understand how this configuration file is setup or how MultiQC works.

1.3.6 Config parameters

Below are descriptions and usage options for the various config parameters specified in config.yaml.

Pa-
rame-
ter

Re-
quired

Description

sampleFileY Manifest file with IDs
intervalsFileY File with interval names and file paths
jobs Y Max jobs to run concurrently
sexLinkerY File with reported sex of each sample ID
tempDir Y Location of temp directory; does not have to exist prior to pipeline execution
runType Y Specify run mode to use (see below)
full Y [yes|no] Set to yes for full run mode
joint_genotypingY [yes|no] Set to yes for joint calling from gVCFs
fastq_qc_onlyY [yes|no] Set to yes for FASTQ QC and trimming
global_varsN Set global java options
cluster_modeN Used to submit jobs to a cluster only if you are using the optional wrapper script. See Execution
default_queueY Name of your default cluster partition/queue; can be ~
compute_queueY Name of queue/partition best suited for compute- intensive jobs; can be ~
memory_queueY Name of queue/partition best suited for memory-intensive jobs; can be ~
center_idY Name of sequencing center for use in @RG tag in bams
max_concurrentY Max concurrent jobs for specific high-bandwidth rules, to avoid potentially hitting bandwidth caps

if deployed in a cloud environment; see wrapper script for an example of how to pass this in to
snakemake. Set to the same number as jobs if you don’t want to limit concurrent rules in this way

max_het_ratioY Max het/hom ratio to allow through post-calling QC
min_avg_depthY Minimum depth required for sample to pass post-calling QC
max_contamY Max % contamination to allow through post-calling QC
time_thresholdY (minutes) Exclude rules from the benchmarking report if elapsed time is below this threshold
somalierY Check relatedness and sex discordance with Somalier (requires sex_linker.tsv) only available in

full run mode. Support of Mac OSX is experimental, so you may want to set this to False on a Mac

The remainder of the config.yaml file contains a selected set of exposed per-tool parameters. For the most part, this
allows tuning of resource allocation on a per-tool basis (i.e. threads and memory in MB). Java-based tools also allow
for arbitrary java options to be passed through via java_opts. Additional exposed parameters include:

• genomicsDBImport and genotypeGVCFs: We have exposed some useful parameters that have been helpful to
adjust as scale increases. Please see GATK documentation for the relevant tools to learn more.

• verifyBamID: A region field allows the user to specify chromosomes over which to run contamination analysis,
in an attempt to mitigate large memory requirements.

1.3. Configuration 5

54gene-wgs-germline

1.4 Execution

1.4.1 Deploying the pipeline

With the config.yaml configured to your run-mode of choice with paths to the necessary manifest and input files,
the workflow can be executed on any infrastructure using the snakemake command, supplied with further Snake-
make command-line arguments (e.g. specifying a profile with --profile or --cluster to submit jobs to an HPC)
depending on your environment.

Test your configuration by performing a dry-run:

snakemake --use-conda -n

Execute the workflow locally via:

snakemake --use-conda --cores $N

Execute the workflow on a cluster using something like:

snakemake --use-conda --cluster sbatch --jobs 100

The pipeline will automatically create a subdirectory for logs in logs/ and temporary workspace at the path specified
for tempDir in the config.yaml.

1.4.2 Wrapper scripts

We have provided two convenience scripts in the 54gene-wgs-germline repository to execute the workflow in a cluster
environment: run.sh and wrapper.sh. You may customize these scripts for your needs, or run using a profile (e.g.
this profile for a slurm job scheduler).

The wrapper.sh script embeds the snakemake command and other command-line flags to control submission of jobs
to an HPC using the cluster_mode string pulled from the config.yaml. This script also directs all stdout from
Snakemake to a log file in the parent directory named WGS_${DATE}.out which will include the latest git tag and
version of the pipeline, if cloned from our repository. For additional logging information, see Logging.

This wrapper script can be edited to your needs and run using bash run.sh.

1.4.3 Automatic retries with scaling resources

Many rules in this pipeline are configured to automatically re-submit upon failure up to a user-specified number of times.
This is controlled via Snakemake’s --restart-times command line parameter. The relevant rules will automatically
scale resource requests with every retry as follows (example from rule align_reads):

resources:
mem_mb=lambda wildcards, attempt: attempt * config["bwa"]["memory"],

In this example, if the specified amount for bwa used in align_reads is set to memory: 3000 but the job fails,
it will be resubmitted on a second attempt with twice the memory. Subsequently, it if fails again, a third attempt
with three times the memory will be submitted (depending on your setting for --restart-times). If your system or
infrastructure does not have the necessary memory available, there is potential for re-submission of jobs to fail due to
insufficient resources.

6 Chapter 1. Documentation of WGS variant calling at 54gene

https://github.com/Snakemake-Profiles/slurm

54gene-wgs-germline

1.4.4 Logging

All job-specific logs will be directed to a logs/ subdirectory in the home analysis directory of the pipeline. This
directory is automatically created for you upon execution of the pipeline. For example, if you run the pipeline on a
Slurm cluster with default parameters, these log files will follow the naming structure of snakejob.<name_of_rule>.
<job_number>.

If you choose to use the wrapper.sh script provided and modified for your environment, a WGS_${DATE}.out log file
containing all stdout from snakemake will also be available in the parent directory of the pipeline.

1.5 Investigate the results

1.5.1 Assessing completion

Upon pipeline completion, verify that all steps have completed without error by checking the top-level log (called
WGS_<datestamp>.out if using the optional wrapper script; otherwise see Snakemake’s documentation for the default
location of stdout). The bottom few lines of the file should contain something similar to nnn of nnn steps (100%)
done. Additional job logs (when run on a high-performance computing cluster) are stored in the logs/ sub-directory.

1.5.2 Outputs and results

All pipeline results are stored in the results/ directory.

• The hard-filtered, joint-called VCF can be found in results/HaplotypeCaller/filtered/HC_variants.
hardfiltered.vcf.gz

• For future joint-calling, the gVCFs are located at results/HaplotypeCaller/called/
<sample>_all_chroms.g.vcf.gz

• Deduplicated and post-BQSR bams are found at results/bqsr/<sample>.bam

Samples that fail the following thresholds are automatically removed from the above joint-called VCF, and the
output is placed in results/post_qc_exclusions/samples_excluded.HC_variants.hardfiltered.vcf.gz.
The record of sample exclusions, along with reasons for exclusion, is found at results/post_qc_exclusions/
exclude_list_with_annotation.tsv. Values listed are defaults, but can be changed in the config.yaml.

1. Average depth of coverage < 20x

2. Contamination > 3%

3. Het/Hom ratio > 2.5

1.5.3 QC

The following QC metrics are available (depending on run mode selected):

• Pre- and post-trimming FastQC reports at results/fastqc/ and results/post_trimming_fastqc/, re-
spectively

• Trimming stats via fastp at results/paired_trimmed_reads/

• Alignment stats via samtools at results/alignment_stats/

• Recalibration stats from bqsr at results/bqsr/

• Relatedness via Somalier at results/qc/relatedness/

1.5. Investigate the results 7

https://github.com/brentp/somalier

54gene-wgs-germline

• Sample contamination via verifyBamID at results/qc/contamination_check/ (for full runs only; not in-
cluded in joint-genotyping only run mode)

• Inferred sex via bcftools +guess-ploidy at results/qc/sex_check/

• Picard metrics at results/HaplotypeCaller/filtered/

• bcftools stats at results/qc/bcftools_stats/

• MultiQC report at results/multiqc/

• Benchmarking report of pipeline performance statistics (i.e. elapsed time, memory and CPU utilization for rules
above specified time_threshold in config.yaml) at performance_benchmarks/benchmarking_report.
html

• Run summary report for the pipeline, excluded samples and discordances at results/run_summary/
run_summary.html

Examples

Below is an example of a plot from the benchmarking_report.html report generated, showing execution time across
rules in a pipeline run:

Below is an example of the final subject tracking table generated in the run_summary.html report, showing QC
outcomes for subjects included in a pipeline run:

8 Chapter 1. Documentation of WGS variant calling at 54gene

https://genome.sph.umich.edu/wiki/VerifyBamID

54gene-wgs-germline

1.6 Tests

1.6.1 Unit tests

Unit tests for the python modules used in this workflow can be found in workflow/scripts/tests and run using
Pytest which is included in the conda run-time environment for this pipeline.

To run all available unit tests:

conda activate 54gene-wgs-germline
pytest -s workflow/scripts/tests/*.py

1.6.2 Pipeline/Integration tests

To test the core pipeline, we provide a small test dataset and instructions on how to use this dataset available in a
repository here.

To summarize, this test dataset contains a small region of chromosome 21 from the NA12878 platinum reference
genome. The above repository contains all necessary inputs (configuration file, manifest, intervals, sex_linker files)
required to run the pipeline in all three run-modes. The README provides instructions on how to use these files to
execute a test using the 54gene-wgs-germline pipeline.

1.6. Tests 9

https://gitlab.com/data-analysis5/dna-sequencing/54gene-wgs-test-data

54gene-wgs-germline

1.6.3 Snakemake unit tests

In development (TBD)

1.6.4 CI/CD

The aforementioned python unit tests and integration tests (in all three run-modes) are run as part of the Gitlab Con-
tinuous Integration (CI) pipeline for this codebase. You can find the status of the CI pipeline on the main repository
page.

Note: The test suite and CI pipeline are still a work in progress.

1.7 Core pipeline

This page describe details of the various run-modes available in this pipeline, the rules used within them and further
specifications on the tools used. This page provides information on the parameters used for certain tools and behaviours
between the run-modes.

1.7.1 Pulling in resources

There is no config option to point to a reference genome. The pipeline automatically pulls in the required GRCh38
reference files, including the reference genome and all requisite indices as well as the known SNP and indel files for
running BQSR, from the Broad Institute’s public AWS S3 bucket (s3://broad-references/hg38/v0/) in the rule
get_resources. We have not provided an option for hg19/GRCh37.

1.7.2 FastQC and read trimming

In full and fastqc_only run modes:

The pipeline will create symbolic links for the supplied input FASTQs from the manifest file in rule
symlink_fastqs. FastQC generates reports based on filename, and has no option to change the output filenames.
Symlinking allows harmonization of filenames to the convention followed throughout the pipeline; for FASTQs, that
convention is <readgroup>_r[12].fastq.gz. Please bear in mind these symlinks when managing data on your
infrastructure.

rule fastqc will then generate FastQC reports for all input FASTQs. Note that this is one of the rules governed by
the max_concurrent config argument (see Config parameters). On filesystems where IO bandwidth is capped, you
may want to control the number of concurrent rules running at this stage.

Next, we perform read trimming and adapter removal (currently hard-coded to use Illumina’s TruSeq adapters) using
fastp. If you need to use alternate adapters or adjust other fastp parameters, please submit a feature request to expose
these as parameters in config space.

Post-trimming, FastQC will be run again on the trimmed reads. This results in FastQC results for the raw input reads in
results/fastqc, and post-trimmed reads in results/post_trimming_fastqc. Review these reports to monitor
read quality and effective adapter removal.

Note that fastqc_only run mode will stop here, allowing a quick turnaround in sharing read quality information with
lab, and assessing whether there are any samples to drop before performing a more computationally costly full run.

10 Chapter 1. Documentation of WGS variant calling at 54gene

https://docs.gitlab.com/ee/ci/
https://docs.gitlab.com/ee/ci/
https://github.com/OpenGene/fastp

54gene-wgs-germline

1.7.3 Read alignment, deduplication, and BQSR

In full mode only:

Trimmed reads are aligned to the reference genome using BWA in rule align_reads. The read1 and read2 data
are combined into a single output BAM per FASTQ pair. If samples were run over several lanes (e.g. 4 lanes), each
per-lane read1 and read2 FASTQ pair will be aligned individually, then combined during the subsequent deduplication
step (see rule mark_duplicates). This helps with efficient alignment by running multiple smaller alignments in
parallel. The read group IDs of the BAM files will include the sequencing center ID specified in the config.yaml
under the center_id parameter.

The alignment step outputs aligned and sorted BAMs, one per sample-and-lane, at results/mapped/<readgroup>.
bam. These BAMs are flagged as temp, so they are automatically removed unless run with the --notemp Snakemake
flag (see Snakemake documentation).

After alignment, duplicate reads in the sorted BAMs generated for each readgroup are then marked and removed in
rule mark_duplicates. It is at this step that samples split over multiple lanes will be merged, and subsequently
named with the sample ID provided in the manifest. This generates one BAM file for each sample, found as results/
dedup/<sample ID>.bam. Subsequently, the pipeline will use GATK’s BaseRecalibrator to generate a recalibration
table for base quality scores using known sites VCF pulled from the Broad’s resources bucket. This recalibration is
then applied to each BAM in rule apply_bqsr. Samtools stats are then generated for all BAMs. See the Investigate
the results page for more information on where to find the stats. Upon recalibration, the per-sample, sorted BAM files
and their indexes can be found in results/bqsr/<sample ID>.bam.

1.7.4 Variant calling

Per-sample gVCFs are generated in rule HC_call_variants using GATK’s HaplotypeCaller. Calling is parallelized
over a user-specified number of intervals and/or regions of the genome using the interval file listed in the config. A
temp-flagged gVCF for each sample will be generated for each specified interval/region; these are automatically cleaned
up once they are all present and have been successfully combined into a single per-sample gVCF using GATK’s Gath-
erVcfs. This method allows for parallelization and reduction in overall execution time for variant calling. Following
the GVCF workflow, these are to be used for joint genotyping of multiple samples later in the pipeline for scalable anal-
yses. The resulting per-sample gVCF is compressed and indexed, and can be found at results/HaplotypeCaller/
called/<sample>_all_regions.g.vcf.gz.

1.7.5 Joint genotyping

In joint_genotyping mode only:

It is at this step in the workflow that a second entry point is provided when the run mode in the config.yaml is set to
joint_genotyping. In this run mode, the gVCFs provided in the manifest file and their indices will be symlinked to
a subdirectory within /results/HaplotypeCaller/called/ prior to continuing on to the rest of the workflow.

In joint_genotyping and full run modes:

In order to perform joint-genotyping over multiple samples using GATK’s GenotypeGVCFs, the input gVCFs must be
consolidated across samples as the genotyping step can only take one single input. To circumvent this issue, we use
GATK’s GenomicsDBImport in rule HC_consolidate_gvcfs to generate database stores for each sample, paral-
lelized again across intervals/regions, to then pass into GenotypeGVCFs. DBImport can potentially take up a lot of
temp space so it is recommended that --tmp-dir be used to redirect to a larger temp space. The --batch-size and
--reader-threads parameters can be tweaked in the config.yaml to read in more data stores concurrently or in
larger batch sizes but the default settings are those suggested by GATK developers.

Joint genotyping using the various database stores created is performed in rule HC_genotype_gvcfs to emit a
genotyped gVCF for each interval/region in results/HaplotypeCaller/genotyped/{interval}.vcf.gz. The
--max_alt_alleles to genotype and --max_genotype_count for each site can be tweaked in the config.yaml.

1.7. Core pipeline 11

https://github.com/lh3/bwa
https://snakemake.readthedocs.io/en/stable/executing/cli.html#BEHAVIOR
https://gatk.broadinstitute.org/hc/en-us/articles/360037225632-HaplotypeCaller

54gene-wgs-germline

We exposed these and other parameters for GenomicsDBImport after encountering recent issues where the
--max-alternate-alleles flag for GenotypeGVCFs was set at a default of 6 but was not actually being applied
as a threshold. A fix in GATK v4.2.4.1 attempted to apply this threshold, but instead resulted in a bug where the tool
would crash upon reaching a locus exceeding this threshold. Subsequently, an update in v4.2.5.0 introduced a new
parameter for GenotypeGVCFs called --genomicsdb-max-alternate-alleles, which is required to be minimum
one greater than --max-alternate-alleles to account for the NON_REF allele.

The per-interval/region, genotyped gVCFs will be concatenated into one sorted, indexed, project-level multi-sample
gVCF for downstream analysis in results/HaplotypeCaller/genotyped/HC_variants.vcf.gz.

Note: While GenomicsDBImport supports adding N+1 samples to the datastores, our pipeline does not utilize this
functionality and instead creates the databases every time from scratch. This was a development choice made to avoid
issues with potential failures with maintaining the datastores and revisiting them in future analyses.

1.7.6 Variant filtering

The project-level VCF is normalized and multiallelics are split using bcftools norm in rule
split_multiallelics. This means that the resulting VCF may have multiple lines representing the same ge-
nomic position. This is conformant with VCF specifications, and may not be expected as input by all downstream
tools. We have elected to split multiallelics for several reasons, including:

• Inability to apply hard filtering to multi-type loci. GATK’s hard filters require first splitting indels and SNPs;
multi-type loci don’t get split into either category. So, by splitting multiallelics, you can apply the appropriate
filter to all alt alleles

• Difficulty in parsing which annotations refer to which allele after using a tool like VEP or SNPeff

Hard-filtering using GATK’s VariantFiltration tool is performed separately on the SNP and indel-specific project-level
VCFs in rule hard_filter_snps and rule_hard_filter_indels. After variants are flagged in the FILTER
column based on hard filters, indels and snps are recombined and can be found at results/HaplotypeCaller/
filtered/HC_variants.hardfiltered.vcf.gz. For more information on how we perform hard-filtering, see
GATK’s documentation on hard-filtering recommendations.

Note: We currently do not remove the filtered sites themselves from the VCF but instead just update the filter field. You
will want to do a pass with GATK or bcftools to filter out non-PASS variants.

1.7.7 Post-calling QC

Contamination Check

In full mode only:

As an added QC measure, we perform a contamination check on the BAM files using a tool called VerifyBamID. This
tool estimates the most likely proportion of contaminant DNA present in a sample given phred likelihoods of actual
basecalls, assuming HWE.

The tool normally takes the entire BAM file as an input but to reduce the computational burden of performing this check,
we opted to only subset particular chromosomes (ideally one or two) from the BAM files to perform the check. We
have found that is this sufficient for initial flagging of contamination for further in-depth investigation of troublesome
samples. We allow the ability to select these chromosomes within the config.yaml.

This step in rule contamination_check will output various contamination metrics for each sample BAM file that
are combined in a summary file. This summary file will be later used for automated filtering of samples out of the
project-level VCF based on thresholds defined in the config.yaml. See the Sample exclusions section for more
information.

12 Chapter 1. Documentation of WGS variant calling at 54gene

https://github.com/broadinstitute/gatk/issues/7542
https://github.com/broadinstitute/gatk/pull/7655
https://gatk.broadinstitute.org/hc/en-us/articles/360035890471-Hard-filtering-germline-short-variants
https://genome.sph.umich.edu/wiki/VerifyBamID

54gene-wgs-germline

Checking relatedness with Somalier

If check_relatedness is set to yes in the config.yaml, the pipeline will run Somalier to check for relatedness
amongst the samples. Somalier is a tool that can be used to check any number of samples from joint-called VCFs for
identity and to infer relationships. The tool takes as input a jointly-called cohort VCF and PED file of expected sexes
and relationships. Our pipeline requires a simple sex linker file described in Configuration and creates the PED file for
you. An example of the Somalier output can be found here.

This tool provides a rough estimate of relatedness which we mainly use to identify unexpected genetic duplicates. To
confirm specific relationships, we perform a second pass evaluation of the relevant samples using more specialized
software, e.g. KING, graf, etc. Somalier uses the following equation to determine relatedness:

(shared-hets)(i,j)-2*ibs0(i,j)/min (hets(i),hets(j))

This assumes, as noted in their publication, that the sites they’ve selected on which to assess relatedness are “high-
quality, unlinked sites with a population allele frequency of around 0.5.” We suspect this will not hold true across all
populations, and we are currently working in a relatively underrepresented ancestry group. It is unclear how much
this will degrade across multiple populations with some degree of shared ancestry. Note that the relatedness value
will always be depressed when comparing samples from disparate ancestries, for example, NA12878 with continental
African subjects.

Sex Check

Somalier also provides functionality to assess sex discordance. The HTML report provided by Somalier, and in the
MultiQC report that ingests this data, includes a plot of scaled mean depth on X vs. self-reported sex. This plot allows
quick identification of disagreement between reported and genetic sex.

In addition to Somalier, we also use bcftools’ guess-ploidy plugin to determine sample sex from genotype likelihoods.
These results are also included in the MultiQC report generated at the end of the post-calling QC stage. See MultiQC
for more information.

Sample exclusions

We exclude samples from the project-level hard-filtered VCF in rule create_exclude_list based on metrics and
information generated from the contamination check and bcftools stats. Samples are excluded based on the following
default thresholds:

• Max het/hom ratio of 2.5

• Minimum average depth of 20

• Maximum contamination estimate of 0.03 (only used if run in full run mode)

These thresholds can be tweaked in the config.yaml. A list of samples to exclude and another list with these samples
and annotations for why they were excluded will be generated in results/post_qc_exclusions/.

Post sample exclusion, another sorted and indexed, project-level, hard-filtered VCF will emitted in results/
post_qc_exclusions/samples_excluded.HC_variants.hardfiltered.vcf.gz. Note that the ID column
here will also be updated to CHROM:POS:REF:ALT using bcftools annotate.

1.7. Core pipeline 13

https://github.com/brentp/somalier
https://brentp.github.io/somalier/ex.html
https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-020-00761-2

54gene-wgs-germline

MultiQC

A MultiQC report is generated for all three run-modes and will differ in content depending on which post-calling QC
checks were performed.

For fastqc_only run mode, the multiQC report will include:

• Pre- and post-read-trimming fastQC results

For the full run mode, the multiQC report will include:

• Pre- and post-read-trimming fastQC results

• Bcftool stats on joint-called variants

• Deduplication metrics for BAM files

• Sex check results from bcftools guess-ploidy

• Contamination check results from verifyBamID

• If specified in config, relatedness check results from Somalier

• Variant calling metrics

For joint_genotyping mode, the multiQC report will include:

• Variant calling metrics

• Sex check results from bcftools guess-ploidy

• Bcftool stats on joint-called variants

• If specified in config, relatedness check results from Somalier

1.8 Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

1.8.1 [1.0.0] - 2022-08-01

Added

• Initial release of basic feature set, including the following

• Read filtering and trimming

• Read alignment, deduplication, and BQSR

• Variant calling and filtering

• Joint-genotyping

• Sex discordance and relatedness assessment

• Generate MultiQC reports

• Multiple run modes for initial QC, full end-to-end runs, and joint-calling only

• Read the Docs documentation

• Companion test data repo

14 Chapter 1. Documentation of WGS variant calling at 54gene

https://keepachangelog.com/en/1.0.0/
https://semver.org/spec/v2.0.0.html

54gene-wgs-germline

1.9 For developers

1.9.1 Contribute back

For developers, if you would like to contribute back to this repository, consider forking the original repo and creating
a pull request:

1. Fork the original repo to a personal or lab account.

2. Clone the fork to your local system, to a different place than where you ran your analysis.

3. Copy the modified files from your analysis to the clone of your fork, e.g., cp -r workflow path/to/fork.
(Make sure to not accidentally copy config file contents or sample sheets. Instead, manually update the example
config files if necessary)

4. Commit and push your changes to your fork.

5. Create a pull request against the original repository.

1.9.2 Obtain updates from upstream

Whenever you want to synchronize your workflow copy with new developments from upstream, do the following.

1. Once, register the upstream repository in your local copy: git remote add -f upstream git@github.
com:snakemake-workflows/54gene-wgs-germline.git or git remote add -f upstream https://
github.com/snakemake-workflows/54gene-wgs-germline.git if you do not have setup ssh keys.

2. Update the upstream version: git fetch upstream

3. Create a diff with the current version: git diff HEAD upstream/master workflow >
upstream-changes.diff

4. Investigate the changes: vim upstream-changes.diff

5. Apply the modified diff via: git apply upstream-changes.diff

6. Carefully check whether you need to update the config files: git diff HEAD upstream/master config.
If so, do it manually, and only where necessary, since you would otherwise likely overwrite your settings and
samples.

1.10 References

The following software packages are used in this pipeline:

1.9. For developers 15

https://help.github.com/en/articles/fork-a-repo
https://help.github.com/en/articles/cloning-a-repository
https://help.github.com/en/articles/creating-a-pull-request

54gene-wgs-germline

Soft-
ware

Website Citation

AWS
CLI

https://github.com/aws/
aws-cli

BCFtools https://github.com/samtools/
bcftools

doi: 10.1093/gigascience/giab008

BWA https://github.com/lh3/bwa doi: 10.48550/arXiv.1303.3997
conda https://docs.conda.io/en/

latest/
fastp https://github.com/

OpenGene/fastp
doi: 10.1093/bioinformatics/bty560

FastQC https://www.bioinformatics.
babraham.ac.uk/projects/
fastqc/

GATK4 https://github.com/
broadinstitute/gatk

mat-
plotlib

https://matplotlib.org/

Mul-
tiQC

https://github.com/ewels/
MultiQC

doi: 10.1093/bioinformatics/btw354

pandas https://pandas.pydata.org/
Python https://www.python.org/
R https://www.r-project.org/ R Core Team. R: A Language and Environment for Statistical Comput-

ing. R Foundation for Statistical Computing, Vienna, Austria, (2022).
SAM-
tools

https://github.com/samtools/
samtools

doi: 10.1093/gigascience/giab008

Snake-
make

https://github.com/
snakemake/snakemake

doi: 10.12688/f1000research.29032.1

Soma-
lier

https://github.com/brentp/
somalier

doi: 10.1186/s13073-020-00761-2

Tabix https://github.com/samtools/
htslib

doi: 10.1093/gigascience/giab007

Ver-
ify-
BamID

https://github.com/statgen/
verifyBamI

doi: 10.1016/j.ajhg.2012.09.004

16 Chapter 1. Documentation of WGS variant calling at 54gene

https://github.com/aws/aws-cli
https://github.com/aws/aws-cli
https://github.com/samtools/bcftools
https://github.com/samtools/bcftools
https://doi.org/10.1093/gigascience/giab008
https://github.com/lh3/bwa
https://doi.org/10.48550/arXiv.1303.3997
https://docs.conda.io/en/latest/
https://docs.conda.io/en/latest/
https://github.com/OpenGene/fastp
https://github.com/OpenGene/fastp
https://doi.org/10.1093/bioinformatics/bty560
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/broadinstitute/gatk
https://github.com/broadinstitute/gatk
https://matplotlib.org/
https://github.com/ewels/MultiQC
https://github.com/ewels/MultiQC
http://dx.doi.org/10.1093/bioinformatics/btw354
https://pandas.pydata.org/
https://www.python.org/
https://www.r-project.org/
https://github.com/samtools/samtools
https://github.com/samtools/samtools
https://doi.org/10.48550/arXiv.1303.3997
https://github.com/snakemake/snakemake
https://github.com/snakemake/snakemake
https://doi.org/10.12688/f1000research.29032.1
https://github.com/brentp/somalier
https://github.com/brentp/somalier
https://doi.org/10.1186/s13073-020-00761-2
https://github.com/samtools/htslib
https://github.com/samtools/htslib
https://doi.org/10.1093/gigascience/giab007
https://github.com/statgen/verifyBamI
https://github.com/statgen/verifyBamI
https://doi.org/10.1016/j.ajhg.2012.09.004

	Documentation of WGS variant calling at 54gene
	Overview
	Inputs
	Outputs

	Installation
	Obtain a copy of this workflow
	Install the run-time environment

	Configuration
	Configuration file
	Manifest file
	Intervals file
	Sex linker file
	MultiQC configuration
	Config parameters

	Execution
	Deploying the pipeline
	Wrapper scripts
	Automatic retries with scaling resources
	Logging

	Investigate the results
	Assessing completion
	Outputs and results
	QC
	Examples

	Tests
	Unit tests
	Pipeline/Integration tests
	Snakemake unit tests
	CI/CD

	Core pipeline
	Pulling in resources
	FastQC and read trimming
	Read alignment, deduplication, and BQSR
	Variant calling
	Joint genotyping
	Variant filtering
	Post-calling QC
	Contamination Check
	Checking relatedness with Somalier
	Sex Check
	Sample exclusions
	MultiQC

	Changelog
	[1.0.0] - 2022-08-01
	Added

	For developers
	Contribute back
	Obtain updates from upstream

	References

